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Abstract. Security auditing of industry-scale software systems mandates au-
tomation. Static taint analysis enables deep and exhaustive tracking of suspi-
cious data flows for detection of potential leakage and integrity violations, such
as cross-site scripting (XSS), SQL injection (SQLi) and log forging. Research
in this area has taken two directions: program slicing and type systems. Both of
these approaches suffer from a high rate of false findings, which limits the usabil-
ity of analysis tools based on these techniques. Attempts to reduce the number
of false findings have resulted in analyses that are either (i) unsound, suffering
from the dual problem of false negatives, or (ii) too expensive due to their high
precision, thereby failing to scale to real-world applications.
In this paper, we investigate a novel approach for enabling precise yet scalable
static taint analysis. The key observation informing our approach is that taint anal-
ysis is a demand-driven problem, which enables lazy computation of vulnerable
information flows, instead of eagerly computing a complete data-flow solution,
which is the reason for the traditional dichotomy between scalability and preci-
sion. We have implemented our approach in ANDROMEDA, an analysis tool that
computes data-flow propagations on demand, in an efficient and accurate man-
ner, and additionally features incremental analysis capabilities. ANDROMEDA is
currently in use in a commercial product. It supports applications written in Java,
.NET and JavaScript. Our extensive evaluation of ANDROMEDA on a suite of 16
production-level benchmarks shows ANDROMEDA to achieve high accuracy and
compare favorably to a state-of-the-art tool that trades soundness for precision.

Keywords: Security, Static Analysis, Taint Analysis, Information Flow, Integrity, Ab-
stract Interpretation

1 Introduction

Web-application security is an ever-growing concern. By design, Web applications feed
on inputs whose source is untrusted, perform numerous security-sensitive operations
(such as database accesses and transfers of Web content to remote machines), and ex-
pose data to potentially malicious observers. It is not surprising, then, that six out of



the ten most critical Web-application vulnerabilities6 are information-flow violations,
which can break integrity (whereby untrusted inputs flow into security-sensitive compu-
tations) or confidentiality (whereby private information is revealed to public observers).

During the last decade, there has been intensive research on methods and algorithms
for automatically detecting information-flow violations in Web applications. However,
many of the published approaches are not readily applicable to industrial Web applica-
tions. Solutions based on type systems tend to be overly complex and conservative [34,
20, 27], and are therefore unlikely to enjoy broad adoption, whereas those based on
program slicing are often unsound [33] or limited in scalability [14, 28].

Our Approach. In this paper, we present ANDROMEDA, a sound and highly accu-
rate static security scanner, which also scales to large code bases, being designed for
commercial needs as part of a product offering, IBM Security AppScan Source.7 AN-
DROMEDA performs a form of abstract interpretation [6] known as taint analysis [25]:
It statically detects data flows wherein information returned by a “source” reaches the
parameters of a “sink” without being properly endorsed by a “downgrader”. Depending
on whether the problem being solved is related to integrity or confidentiality, a source
is a method that injects untrusted or secret input into a program, a sink is a method that
performs a security-sensitive computation or exposes information to public observers,
and a downgrader is a method that sanitizes untrusted data or declassifies confidential
data, respectively. ANDROMEDA is equipped with a thorough configuration of triples
of sources, sinks and downgraders for all known integrity and confidentiality problems,
partitioned into security rules, such as XSS and SQLi.

The key idea behind ANDROMEDA is to track vulnerable information flows (em-
anating from sources) in a demand-driven manner, without eagerly building any com-
plete representation of the subject application. ANDROMEDA builds a call-graph repre-
sentation of the program based on intraprocedural type inference. Furthermore, when
there is a need to compute an aliasing relationship, stemming from flow of vulnerable
information into the heap, ANDROMEDA issues a granular aliasing query focused on the
flow at hand, thereby obviating the need for whole-program pointer analysis. This en-
ables (i) sound and efficient scanning of large applications, where typically only a small
portion of the application requires modeling, and (ii) incremental-analysis capabilities,
which allow to preserve valid parts of the old solution when rescanning the applica-
tion following code changes. Both of these characteristics are enabled by the fact that
ANDROMEDA does not need to build any form of whole-program representation.

In another view, ANDROMEDA can be thought of as an extended type system, where
a fully automated context-sensitive, interprocedural, incremental inference engine au-
tomatically attaches security annotations to program locations and propagates them.
ANDROMEDA enforces the following two properties:
1. The inference process is fully automated, and thus no complex, non-standard type

system is forced on the developer.
2. The analysis is infinitely context sensitive (up to recursion), and consequently, it

does not produce overly conservative results.

6 http://owasp.org.
7 http://ibm.com/software/rational/products/appscan/source/.
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These properties lift the two most significant barriers that have so far prevented type
systems from enjoying broad industrial adoption.

To our knowledge, ANDROMEDA is the first taint-analysis algorithm that performs
demand-driven analysis from the bottom up, including representing the program’s type
hierarchy, call graph and data-flow propagation graph. This is the key to achieving both
accuracy and scalability without sacrificing soundness. We are also not aware of any
other security analysis featuring incremental scanning capabilities.

Contributions. This paper makes the following specific contributions:
– Demand-driven taint analysis. We present a demand-driven security analysis algo-

rithm that is sound (even in the presence of multi threading), accurate and scalable.
We describe the design of the entire analysis stack in support of this feature.

– Incremental analysis. ANDROMEDA enables efficient rescanning of the subject ap-
plication following code changes. This is thanks to its ability to track vulnerable
flows in a “local”, on-demand fashion, which facilitates invalidation of only parts of
the previous data-flow solution. We describe the data structures ANDROMEDA im-
plements for efficient incremental analysis.

– Framework and library support. Beyond the core analysis, we describe novel ex-
tensions enabling effective modeling of framework and library code. These exten-
sions are important for an analysis targeting real-world Web applications, which are
built atop reusable frameworks.

– Implementation and evaluation. ANDROMEDA has been fully implemented. It sup-
ports Java, .NET and JavaScript programs, and is currently used in a commercial
product. We present an extensive evaluation of ANDROMEDA, comparing it to a state-
of-the-art security scanner [33] on a suite of 16 real-world Java benchmarks, which
shows ANDROMEDA to be superior.

2 Motivation and Overview

To illustrate some of the unique features of ANDROMEDA, we use the Aliasing5
benchmark from the Stanford SecuriBench Micro suite.8 Designed for expository pur-
poses, this example shows a Java Web application reading untrusted data from servlet
parameters. Specifically, this example highlights the importance of tracking aliasing re-
lationships between program variables and fields for sound security analysis, with buf
flowing into two formal arguments of method foo (line 6).

The flow of the entire program is as follows: The doGet handler of the Aliasing5
servlet first initializes a fresh StringBuffer object, buf, with the string "abc"
(line 5). It then invokes method foo, such that its first two formal arguments (buf and
buf2) are aliased. Next, foo assigns the content of an untrusted parameter, "name",
to variable name, in the source statement at line 10. This untrusted value subsequently
taints the buffer pointed-to by buf (line 11). Because of the aliasing relationship be-
tween buf and buf2, the security-sensitive operation at line 13, which renders the
content of buf2 to the response HTML, becomes vulnerable.

8 http://suif.stanford.edu/˜livshits/work/securibench-micro.
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1: public class Aliasing5 extends HttpServlet {
2: protected void doGet(HttpServletRequest req,
3: HttpServletResponse resp)
4: throws ServletException, IOException {
5: StringBuffer buf = new StringBuffer("abc");
6: foo(buf, buf, resp, req); }
7: void foo(StringBuffer buf,
8: StringBuffer buf2, ServletResponse resp,
9: ServletRequest req) throws IOException {
10: String name = req.getParameter("name");
11: buf.append(name);
12: PrintWriter writer = resp.getWriter();
13: writer.println(buf2.toString()); /* BAD */ } }

Fig. 1. The Aliasing5 Benchmark from the SecuriBench Micro Suite

To detect the vulnerability in this program, the security scanner must account for
the aliasing between buf and buf2 in foo. Existing approaches have all addressed
this requirement by applying a preliminary whole-program pointer analysis, such as
Andersen’s flow-insensitive analysis [1], to eagerly compute an aliasing solution before
starting the security analysis [33]. Perfoming a global aliasing analysis places a sig-
nificant limitation on the scalability of the client security analysis, which is mitigated
(but not lifted) if the aliasing analysis is coarse (i.e., context insensitive, flow insensi-
tive, etc). In that case, however, the ensuing security analysis becomes imprecise, often
yielding an excess of false reports due to spurious data flows.

ANDROMEDA, instead, performs on-demand alias resolution. It tracks symbolic
representations of security facts, known as “access paths”, and augments the set of
tracked representations to account for aliases of tracked objects. Loosely speaking, an
access path is a sequence of field identifiers, rooted at a local variable, such as x.f.g.
This access path evaluates to the object o reached by dereferencing field f of the object
pointed-to by x, and then dereferencing field g of o (or ⊥ if no such object exists). (We
provide a formal definition of an access path later, in Section 3.)

ANDROMEDA starts by modeling the effect of the source statement at line 10 as
the seeding data-flow fact name.*. The * notation simply represents the fact that all
objects reachable through variable name are to be considered untrusted. Then, the flow
at line 11 leads the analysis to track both name.* and buf.content.*. However,
because there is a flow into the heap at line 11, the analysis further issues an on-demand
interprocedural aliasing query, which establishes that buf.content is aliased with
buf2.content. Therefore, the analysis additionally tracks buf2.content.*. This
exposes the vulnerability at line 13, where the toString call renders buf2.content
to the response HTML.

3 Core Taint Analysis

The ANDROMEDA algorithm takes as input a Web application, along with its set of
supporting libraries, and validates it with respect to a specification in the form of a set
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of “security rules”. A security rule is a triple 〈Src,Dwn, Snk〉, where Src, Dwn and
Snk are patterns for matching sources, downgraders and sinks in the subject program,
respectively. A pattern match is either a method call or a field dereference. A vulnera-
bility is reported for flows extending between a source and a sink belonging to the same
rule, without a downgrader from the rule’s Dwn set mediating the flow.

The ANDROMEDA algorithm interleaves call-graph construction with tracking of
vulnerable information flows. This is to avoid building eager whole-program represen-
tations. Both the call graph and the data-flow solution computed atop the call graph are
expanded on demand, ensuring scalability while retaining a high degree of accuracy.

3.1 Type-hierarchy and Call-graph Construction

As mentioned earlier, ANDROMEDA refrains from building global program represen-
tations. Instead, it computes its supporting type hierarchy on demand. For this, AN-
DROMEDA utilizes lazy data structures, which provide sophisticated mechanisms for
caching and demand evaluation of type information at the granularity of individual
methods and class fields.

Call-graph construction is also performed lazily. The call graph is built based on lo-
cal reasoning, by resolving virtual calls according to an intra-procedural type-inference
algorithm [3]. Call sites are not necessarily expanded eagerly (i.e., before the data-
flow analysis stage). Rather, an oracle is used to determine whether any given call site
may lead to the discovery of source statements. Our oracle is sound, and is based on
control-flow reachability between the calling method and source methods within the
type-hierarchy graph [7].

3.2 Data-flow Analysis

For a formal description of ANDROMEDA’s data-flow analysis algorithm, we use a stan-
dard description of the program’s state, based on the following domains:

V arId Program variables V al = Loc ∪ {null} Values
FldId Field identifiers Env : V arId→ V al Environment
Loc Unbounded set of objects Heap : Loc× FldId→ V al Heap

A program state, σ = 〈E,H〉 ∈ States = Env ×Heap, maintains the pointing from
variables to their values, as well as from object fields to their values.

To describe the algorithm we use the following syntactic structures:

Statement Meaning
x = new Object() [[x = new Object()]]σ = σ[x 7→ o ∈ Loc. o is fresh]
x = y [[x = y]]σ = σ[E(x) 7→ E(y)]
x.f = y [[x.f = y]]σ = σ[H(〈E(x), f〉) 7→ E(y)]
x = y.f [[x = y.f]]σ = σ[E(x) 7→ H(〈E(y), f〉)]

These are kept to a minimum to simplify the description of the analysis. Extending
the core language to contain procedure calls is straightforward [5].
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Instrumented Concrete Semantics. To track security facts, we instrument the concrete
semantics to further maintain untrusted (or tainted) access paths. Informally, an ac-
cess path is a symbolic representation of a heap location. For example, access path x.g
denotes the heap location pointed-to by field g of the object pointed-to by variable x.
Security analysis over access paths tracks the set of paths evaluating to untrusted values.

More formally, an access path is a (possibly empty) sequence of field identifiers
rooted at a local variable; i.e., an element in V arId×(FldId)∗. The meaning of access
path x.f1 . . . fn is the unique value o ∈ V al reached by first dereferencing x using E,
and then following the references through f1 . . . fn in H, or ⊥ if there are intermediate
null dereferences in the path. This is defined inductively as follows:

[[x.ε]]σ =

{
E(x) x ∈ dom(E)
⊥ otherwise

[[x.f1 . . . fn]]σ =


H(〈[[x.f1 . . . fn−1]], fn〉) [[x.f1 . . . fn−1]]σ 6= ⊥,

〈[[x.f1 . . . fn−1]], fn〉 ∈ dom(H)
⊥ otherwise

An instrumented concrete state is a triple, σ = 〈E,H,T〉, where T is a set of tainted
access paths. We assume a security specification, S, which seeds the set T when eval-
uating certain assignment and field-read statements (according to the Src set of the
provided security rules). The semantic rules for updating T appear in Figure 2.

T
x=new ...;→ T

T
x=y;→ T ∪ {x.f1 . . . fn : y.f1 . . . fn ∈ T}

T
x=y.f;→ T ∪ {x.f1 . . . fn : y.f f1 . . . fn ∈ T}

T
x.f=y;→ T ∪ {A(x).f f1 . . . fn : y.f1 . . . fn ∈ T}

Fig. 2. Forward Data-flow Equations

A
x=new ...;→ A

A
x=y;→ A ∪ {y.f1 . . . fn : x.f1 . . . fn ∈ A}

A
x=y.f;→ A ∪ {y.f f1 . . . fn : x.f1 . . . fn ∈ A} ∪ {x.f1 . . . fn : y.f f1 . . . fn ∈ A}

A
x.f=y;→ A ∪ {y.f1 . . . fn : x.f f1 . . . fn ∈ A} ∪ {x.f f1 . . . fn : y.f1 . . . fn ∈ A}

Fig. 3. Backward Data-flow Equations

Access-path Widening. The key difficulty in using the symbolic access-path representa-
tion for static security analysis is that this representation of the heap, which is known as
storeless [10], is unbounded. This problem manifests when dealing with recursive data
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structures, such as linked lists. To deal with this problem, we apply widening by intro-
ducing a special symbol, ∗. An access path now has either the concrete form x.f1 . . . fn,
or the widened form x.f1 . . . fn ∗, where

[[x.f1 . . . fn ∗]]σ = {o : ∃fn+1 . . . fk ∈ (FldId)∗. o = [[x.f1 . . . fn fn+1 . . . fk]]σ}

That is, a widened access path potentially points to more than one object.
In this way, the analysis can track a bounded number of access paths in a sound

manner by restricting the length of an access path to some constant c, and allowing for
insertion of ∗ at the end of a path of length c instead of extending it when accounting
for the effect of a field-assignment statement.

On-demand Aliasing. As mentioned earlier, ANDROMEDA features the ability to soundly
track symbolic security facts. The key idea is to perform alias analysis on demand, when
an untrusted value flows into an object field (i.e., untrusted data flows into the heap). We
first illustrate this situation through a simple example, where we assume that initially
there is a single taint fact, T = {z.g}, and the last statement—assigning a value to
o.sinkfld—is a sink, and as such must not be assigned an untrusted value:

x = y.f

[2] y.f.h
��

[2] y.f.h

**

T = {z.g}

x.h = z.g

[1] x.h

VV

T = {z.g, x.h, y.f h}

w = y.f.h

[3] w
��

T = {z.g, x.h, y.f h, w}

o.sinkfld = w T = {z.g, x.h, y.f h, w}

We highlight in red the access paths that would be missed by a forward data-
flow analysis without on-demand alias-analysis capabilities, such as the IFDS frame-
work [24]. Such an analysis would ignore the assignment x = y.f because it is not
affected by T, thereby missing the aliasing relation between x.h and y.f.h at the point
when it becomes relevant, which is the following two statements: The first, x.h = z.g,
contaminates x.h, and thus also y.f.h, and the second dereferences y.f.h into w.

In constrast, ANDROMEDA is fully sound, as we prove in Theorem 1. ANDROMEDA
handles cases such as the above by performing on-demand alias analysis. Upon encoun-
tering the field-assignment statement x.h = z.g, ANDROMEDA traverses the control-
flow graph backwards seeking aliases of x.h. It then finds that y.f.h is an alias of x.h,
and propagates this additional security fact forward, which ensures that the security
vulnerability is discovered. The ANDROMEDA propagation steps are visualized above
using labeled edges, the label consisting of the step index (in square brackets) followed
by the learned taint fact.

Formally, ANDROMEDA computes a fixpoint solution for the equations in Figure 3
while traversing the control flow backwards from the statement performing the heap
update. The seeding value for A in our example is the singleton set {x}.
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Theorem 1. The ANDROMEDA data-flow analysis algorithm is sound. That is, in the
fixpoint solution F computed by ANDROMEDA for program P with respect to specifi-
cation S, for every control location c in the program and set A of access paths arising
in F c, γ A ⊇ A′, where A′ is the set of all concrete access paths that may arise in c in
an execution of P .

Proof (Sketch). First, we make the observation that our transformers (in Figure 2) are
distributive (i.e., τ X ∪ Y ≡ τ X ∪ τ Y ). This simplifies the proof by letting us con-
sider singleton sets of access paths [24], making it clear that all the transformers not
modifying the heap (i.e., all transformers except x.f=y) are trivially sound. Finally,
for field assignment, the backward equations (in Figure 3) guarantee that all aliases of
x due to preceding statements (according to the control-flow order) are accounted for.
The equations handle all possible cases, including forward and backward propagation
due to field accesses, and thus result in a complete aliasing solution.

3.3 Extensions: Library and Framework Modeling

Modern Web applications are often built atop one or more frameworks, such as Struts,
Spring and JSF [29, 35]. Frameworks typically invoke application code using reflective
constructs, based on information provided in external configuration files, which com-
plicates static analysis of Web applications.

To address this concern, ANDROMEDA is fully integrated with Framework For
Frameworks (F4F), a recent solution augmenting taint-analysis engines with precise
framework support [29]. F4F automatically generates Web Application Framework
Language (WAFL) static-analysis artifacts, which can be integrated into a taint-analysis
engine to ensure that the interaction of a Web application with the frameworks it uses
is modeled soundly and accurately.

ANDROMEDA’s integration with F4F exploits the fact that static analysis can oper-
ate on non-executable yet legal Java code. We transform the F4F output into synthetic
code that soundly models data flows involving framework code. This choice has several
advantages compared to direct modeling of frameworks within the ANDROMEDA en-
gine, being (i) more lightweight (no need to directly generate Intermediate-Representation
(IR) code), (ii) more portable and reusable (the synthetic Java code generated from the
WAFL specification can be plugged into any existing analysis), as well as (iii) more
intelligible to the developer (being presented with simple Java code instead of IR code).

Before statically analyzing an application, ANDROMEDA takes the WAFL output of
F4F and transforms it as follows. Each call replacement has a synthetic method associ-
ated with it. This is the method that ANDROMEDA should consider in place of the one
specified in the application source code. For every synthetic method, ANDROMEDA
creates Java code corresponding to the instructions for that synthetic method that are
specified in the output of F4F. In most cases, this can be done straightforwardly. How-
ever, there were several interesting problems that we had to address.

One case is simulating method invocations from synthetic methods. Such invoca-
tions are on uninitialized variables, which causes ANDROMEDA’s intra-procedural type
inference to ignore them. Solving this by initializing the variables is problematic: Some
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declared types are abstract, and some do not have a default constructor. Instead, AN-
DROMEDA solves this problem by adding a level of indirection via a method call that
returns null. Since the assignment to null is performed in a different procedure, AN-
DROMEDA’s type inference accepts the call as valid, with a result sufficient to model
taint propagation faithfully.

Another problem arises when synthetic methods invoke default-scope or protected
methods in a class of another package. Since these methods can only be invoked from
classes in the same package, ANDROMEDA extends that package with an additional
public synthetic class containing a public synthetic method that calls the default-scope
or protected method, and returns its return value. Being public and in the same package
as the restricted method, this synthetic method can be invoked without restrictions.

4 Incremental Security Analysis

A key feature of ANDROMEDA is its ability to update the scan report incrementally
following code changes. For industry-scale Web applications, this feature is of crucial
importance. Without it, long waiting times need be spent on reanalysis of the entire
application following any code change, which complicates the integration of security
scanning into the development lifecycle. Moreover, incremental scanning allows verifi-
cation of fixes on the spot, which makes for a fluent and rapid remediation process.

The design of ANDROMEDA, emphasizing local and demand-driven representation
of the subject program, is geared toward incremental scanning. We have implemented
this feature such that neither the soundness nor the accuracy of the analysis are lost in
rescanning, which leaves responsiveness as the main challenge. We address this con-
cern by combining several optimizations and algorithms, which are described in the
remainder of this section.

4.1 Change Impact Analysis

ANDROMEDA’s ability to respond to code changes efficiently is founded on a change-
impact analysis (CIA) algorithm spanning all the layers of data structures comprising
ANDROMEDA, from the type hierarchy, through the call graph, and up to the prop-
agation graph. Upon receiving a notification that a given compilation unit (CU) has
changed, the CIA algorithm compares its new version to the previous one, which it
caches exactly for this purpose. By the end of the comparison, CUs where differences
were found are marked as either modified or deleted or added.

ANDROMEDA then localizes the changes to determine what the bottommost layer
they affect is. For example, if a class is marked as modified due to a change made
in one of its methods, then ANDROMEDA will reason only about that method in the
ensuing stages of the update process. Moreover, if the method has changed in a way that
affects neither the call sites it declares nor the (intraprocedural) type-inference solution
computed for it, then there are no implications with respect to the call graph, and the
notification can immediately flow to the highest layer of the hierarchy, which is the
propagation graph. This focusing strategy translates into a major optimization, whereby
lower layers of the hierarchy can often be skipped.
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4.2 Efficient Data Structures

Since the type hierarchy and call graph of ANDROMEDA are built in a local fashion,
using intra-procedural type inference (cf. Section 3.1), change notifications arriving at
these data structures can be handled efficiently. For example, if the call graph is notified
that method m has changed, then only the subgraph rooted at m needs to be modified.
Furthermore, call sites in m where the type-inference solution for the receiver remains
unchanged can safely be preserved throughout the update process. The challenge is with
the propagation graph, which records transitive information flows.

Following a code change, certain parts of the propagation graph are invalidated,
but detecting the obsolete data-flow edges is difficult without additional bookkeeping,
because they are due to transitive flow of information. To this end, similarly to [26],
we use a support graph, which is an auxiliary graph structure documenting how edges
in the propagation graph, henceforth referred to as taint facts, were formed. Similarly
to [24], we distinguish between two types of edges in the propagation graph: path edges
and summary edges. Path edges correspond to normal intraprocedural flow, whereas
summary edges bridge across call sites. This implies two types of edges in the support
graph:

– Normal edges are of the form tf1 → tf2, where tfi denotes a taint fact.
– Summary edges are of the form 〈tf1,1, tf1,2〉 → 〈tf2,1, tf2,2〉, with the interpre-

tation that summary edge tf2,1 → tf2,2 in the caller was learned based on edge
tf1,1 → tf1,2 in the callee.

When the propagation graph is notified of a change in a particular method, it establishes
the set I of taint facts that can immediately be discarded based on the change. It then
consults the support graph, which computes the transitive closure of the facts in I .
Corresponding edges are then removed from the propagation graph, and the fixpoint
iteration process is renewed by updating the IR of every changed method, and then
searching for new seeds and extending existing path edges.

5 Empirical Evaluation

In this section, we describe the experiments we conducted to measure ANDROMEDA’s
accuracy, performance and incremental capabilities.

5.1 Experimental Setup

ANDROMEDA is a client of the WALA framework.9 It is written in Java and imple-
mented as an Eclipse plugin. We have conducted two sets of experiments to evaluate
ANDROMEDA:
1. Standard Analysis. We measure ANDROMEDA’s performance and accuracy by

applying it to a suite of 16 benchmarks, including applications appearing in [33]
and [17], as well as several contemporary commercial applications. Benchmark
characteristics are provided at the leftmost columns of Figure 4. We compare AN-
DROMEDA with Taint Analysis for Java (TAJ) [33] on 8 common benchmarks.

9 http://wala.sf.net.
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TAJ, which is the most recent and advanced work on industrial taint analysis,
is also a WALA client. The main difference is that TAJ utilizes whole-program
pointer analysis, ensuring accuracy and scalability by enforcing unsound bounds.
For scalability, TAJ uses a preset budget for call-graph and pointer-analysis con-
struction. Similar bounds are used for accuracy (e.g., filtering out witness flows
beyond a given length).

2. Incremental Scanning. We measure average response time for reanalysis of two
applications following several common code changes, such as deleting or adding a
statement or a method.

We performed the experiments on a MacBook Pro laptop computer with a 2.66-GHz
processor and 8 GB of RAM, running OS X V10.8 and Java Standard Edition Runtime
Environment (JRE) V1.6.0 35 with 2.6GB of heap space.10

5.2 Standard Analysis

The results of the first experiment appear in Figure 4. To assess the accuracy of AN-
DROMEDA, a security expert sampled at random 10 findings per benchmark, and clas-
sified them as either true positive (TP), false positive (FP) or unknown. A finding was
classified as unknown if there was missing source code (e.g., if the flow goes through
library code), or the flow was valid but of low exploitability. The TAJ data comes from
the original TAJ paper [33].

The experimental data gives a clear indication of ANDROMEDA’s high accuracy.
Compared to TAJ (on 8 of the benchmarks), ANDROMEDA finds substantially more
issues, reporting 578 findings compared to a total of 280 findings reported by TAJ.
Moreover, ANDROMEDA’s findings are more accurate on 4 of the 5 benchmarks where
accuracy data is available for TAJ, the only exception being Webgoat. The accuracy
statistics are summarized in Figure 6. For performance, ANDROMEDA’s average run-
ning time (on the common benchmarks) is 114 seconds, whereas the average scanning
time of TAJ is 112 seconds, which is almost identical.

Our analysis of the findings suggests that the combination of soundness and frame-
work modeling allows ANDROMEDA to find more application entrypoints, as well as
follow data flows through more parts of the application, compared to TAJ. These ac-
count for ANDROMEDA’s ability to find more quality findings than TAJ while retaining
a better signal-to-noise ratio.

For the entire suite, ANDROMEDA’s accuracy statistics show an average of 53%
TPs, 11% FPs and 36% unknowns. ANDROMEDA’s average running time is 298 sec-
onds (AppA being an outlier). These numbers point to ANDROMEDA’s high precision,
which comes at the reasonable cost of 5 minutes on average per scan.

5.3 Incremental Scanning

To measure ANDROMEDA’s incremental features, we considered a set of common edit-
ing operations, including addition and deletion of statements and methods, which we
10 The running times reported for TAJ are drawn from the original paper [33], where another

execution environment, involving a Windows desktop machine, was used. Running-time com-
parisons should thus be considered with a grain of salt.
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Benchmark Characteristics TAJ ANDROMEDA
Version Class Count Line Count Findings Time (s) TP FP Findings Time (s) TP FP

AjaxChat 0.8.3 29 4147 - - - - 14 30 70% 30%
AltoroJ 1.0 43 746 37 23 80% 20% 35 4 90% 10%
AppA N/A 250 N/A - - - - 301 2555 20% 0%
Blojsom 3.1 254 19984 123 207 - - 139 494 60% 30%
BlueBlog 1.0 38 650 12 6 50% 50% 13 16 100% 0%
Contineo 2.2.3 79 65744 - - - - 228 573 90% 0%
Dlog 3.0-BETA-2 268 17229 6 221 - - 30 51 60% 20%
Friki 2.1.1-58 35 2339 7 9 70% 20% 81 3 100% 0%
GestCV 1.0 124 107494 7 209 50% 50% 89 10 60% 10%
Ginp 1.0 73 387 49 28 - - 122 62 40% 0%
JBoard 0.3 185 17500 - - - - 74 330 10% 0%
JPetstore 2.5.6 116 25820 - - - - 179 73 10% 0%
JugJobs 1.0 30 4815 - - - - 39 32 60% 40%
Photov 2.1 239 210304 - - - - 178 229 10% 0%
StrutsArticle 1.1 45 7897 - - - - 25 35 10% 0%
Webgoat 5.1-20080213 192 17656 39 193 90% 10% 69 275 60% 40%

Fig. 4. Performance and Accuracy Results for TAJ and ANDROMEDA in Standard Scanning

Change Type
Response Time (s)

AltoroJ Webgoat
Deletion Addition Deletion Addition

Taint-propagator statement 2 2.2 1.9 2.2
Security sink 0.5 2 1.9 2.5
Security source 2.1 2.1 1.8 3.2
Irrelevant statement 1.9 2 2.5 2.8
Relevant method 2.2 1.9 1.8 2.7
Irrelevant method 2.2 1.7 1.7 1.7

Fig. 5. Response Times for Various Incremental Changes

ANDROMEDA TAJ
Average TPs 82% 68%
Average FPs 12% 30%
Average Unknowns 6% 2%

Fig. 6. Accuracy Statistics

classified according to the relevance of the statement or method to the solution com-
puted by ANDROMEDA. A statement may either be a source, a sink, a taint propagator
(participating in a vulnerable flow), or an operation lying oustide the ANDROMEDA
data-flow solution. Similarly, a method may or may not participate in the solution.

We examined the effect of either adding or deleting a syntactic construct chosen
from each of these 6 categories, which yielded 12 kinds of possible changes. For each
change type, and each of the two benchmarks we used for this experiment, we applied
the change 10 times. For each round, we chose a target at random from a pool of suitable
candidates that we prepared in advance. The reported numbers are the average (in wall-
clock seconds) across these 10 rounds.

The results of this evaluation are listed in Figure 5. Response times are largely
within the range of 2-3 seconds per change, whereas the overall scanning time of Web-
goat is 275 seconds. For AltoroJ, incremental scanning is less motivated, because anal-
ysis from scratch takes 4 seconds to complete. Still, the average response time for an
incremental change in AltoroJ is 1.9 seconds, which is less than half of the time re-
quired for complete reanalysis. For Webgoat, a response is obtained after 2.2 seconds
on average, which is less than 1% of the time needed for a fresh scan of this benchmark.
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6 Related Work

There is a rich body of work on taint analysis. We here concentrate on static taint analy-
sis, and refer the reader to [4, 22] for a survey of dynamic taint-analysis techniques. An
detailed overview of works on program slicing is given in [30] and references therein.

The notion of tainted variables became known with the Perl language. Typically, the
data manipulated by a program can be tagged with security levels [9], which assume a
poset structure. Under certain conditions, this poset is a lattice [8]. Given a program, the
principle of noninterference dictates that low-security behavior of the program be not
affected by any high-security data, unless that high-security data has been previously
downgraded [12]. Taint analysis is an information-flow problem in which high data is
the untrusted output of a source, low-security operations are those performed by sinks,
and untrusted data is downgraded by sanitizers.

Volpano et al. [34] show a type-based algorithm that certifies implicit and explicit
flows and also guarantees noninterference. Shankar et al. present a taint analysis for
C using a constraint-based type-inference engine based on cqual [27]. Similarly to
the propagation graph built by ANDROMEDA, a constraint graph is constructed for a
cqual program, and paths from tainted nodes to untainted nodes are flagged.

Myers’ Java Information Flow (Jif) [20] uses type-based static analysis to track in-
formation flow. Based on the Decentralized Label Model [21], Jif considers all memory
as a channel of information, which requires that every variable, field, and parameter
used in the program be statically labeled. Labels can either be declared or inferred.
Ashcraft and Engler [2] also use taint analysis to detect software attacks due to tainted
variables. Their approach provides user-defined sanity checks to untaint potentially
tainted variables. Pistoia et al. [23] present a static analysis to detect tainted variables
in privilege-asserting code in access-control systems based on stack inspection.

Snelting et al. [28] make the observation that Program Dependence Graphs (PDGs)
and noninterference are related in that dom(s1) 6 dom(s2) implies s1 /∈ backslice(s2),
where backslice is maps each statement s to its static backwards slice. Based on this
observation, Hammer et al. [14] present an algorithm for verifying noninterference: For
output statement s, backslice(s) must contain only statements whose security label is
lower than s. Though promising, this approach has not been shown to scale.

Livshits and Lam [17] analyze Java EE applications by tracking taint through heap-
allocated objects. Their solution requires prior computation of Whaley and Lam’s flow-
insensitive, context-sensitive may-points-to analysis, based on Binary Decision Dia-
grams (BDDs) [38], which limits the scalability of the analysis [16]. The points-to re-
lation is the same for the entire program ignoring control flow. By contrast, the PDG-
based algorithm in [14] handles heap updates in a flow-sensitive manner, albeit at a
much higher cost. Livshits and Lam’s analysis requires programmer-supplied descrip-
tors for sources, sinks and library methods dealing with taint carriers. Guarnieri et al.
[13] present a taint analysis for JavaScript. Their work relies on Andersen’s whole-
program analysis [1]. While being sound, the analysis is not incremental, and has not
been shown to scale to large programs.

Wassermann and Su extend Minamide’s string-analysis algorithm [19] to syntac-
tically isolate tainted substrings from untainted substrings in PHP applications. They
label nonterminals in a context-free grammar with annotations reflecting taintedness

13



and untaintedness. Their expensive yet elegant mechanism is applied to detect both
SQLi [36] and XSS [37] vulnerabilities. Subsequent work by Tateishi et al. [32] en-
hances taint-analysis precision through a string analysis that automatically detects and
classifies downgraders in the application scope.

McCamant and Ernst [18] take a quantitative approach to information flow: Instead
of using taint analysis, they cast information-flow security to a network-flow-capacity
problem, and describe a dynamic technique for measuring the amount of secret data
that leaks to public observers.

ANDROMEDA’s scalability stems from its demand-driven analysis strategy. Demand-
driven pointer analysis was originally introduced by Heintze and Tardieu [15]. Since
there have been several works on demand-driven points-to analysis via context-free-
language reachability [31, 40, 39]. For taint analysis, our empirical data suggests that
only a small fraction of a large program is expected to be influenced by source state-
ments. Fuhrer at al. [11] take a demand-driven approach in replacing raw references
to generic library classes with parameterized references. At a high level, this analysis
resembles the alias analysis performed by ANDROMEDA, as constraints on type param-
eters are first propagated backwards to allocation sites and declarations, and from there
they are propagated forward.

7 Conclusion

We have presented ANDROMEDA, a security-analysis algorithm featuring local, demand-
driven tracking of vulnerable information flows. Thanks to this design choice, AN-
DROMEDA scales to large codes while being highly accurate, and additionally features
incremental scanning capabilities. ANDROMEDA is part of a commercial product. Our
experimental evaluation of ANDROMEDA, comparing it to a state-of-the-art scanner that
sacrifices soundness for accuracy, shows ANDROMEDA to be favorable.
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